Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present mass estimates and companion demographics on stellar multiples within 25 pc, using a survey of stars of all spectral types done by Robo-AO and supplemented by Gaia. The survey combined direct imaging by Robo-AO, a robotic adaptive optics instrument for 2 m class telescopes, to detect tight companions (<4″ separation) and with Gaia astrometry to detect wider co-moving companions. We estimated the masses for 267 companions using empirical relations and, for a subset of 97, dynamical mass estimates. We utilized previous mass–magnitude models using contrasts measured from Gaia and Robo-AO to estimate the mass and also used the orvara python package, a Markov Chain Monte Carlo orbit fitter using the companion astrometry and Hipparcos-Gaia proper motion accelerations, to estimate dynamical masses. We compare agreements and discrepancies in mass estimates from these two methods.more » « less
- 
            Abstract Wolf 359 (CN Leo, GJ 406, Gaia DR3 3864972938605115520) is a low-mass star in the fifth-closest neighboring system (2.41 pc). Because of its relative youth and proximity, Wolf 359 offers a unique opportunity to study substellar companions around M stars using infrared high-contrast imaging and radial velocity monitoring. We present the results ofMs-band (4.67μm) vector vortex coronagraphic imaging using Keck-NIRC2 and add 12 Keck-HIRES and 68 MAROON-X velocities to the radial velocity baseline. Our analysis incorporates these data alongside literature radial velocities from CARMENES, the High Accuracy Radial velocity Planet Searcher, and Keck-HIRES to rule out the existence of a close (a< 10 au) stellar or brown dwarf companion and the majority of large gas giant companions. Our survey does not refute or confirm the long-period radial velocity candidate, Wolf 359 b (P∼ 2900 days), but rules out the candidate's existence as a large gas giant (>4MJup) assuming an age of younger than 1 Gyr. We discuss the performance of our high-contrast imaging survey to aid future observers using Keck-NIRC2 in conjunction with the vortex coronagraph in theMsband and conclude by exploring the direct imaging capabilities with JWST to observe Jupiter- and Neptune-mass planets around Wolf 359.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
